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Abstract

The plate problem of three!dimensional "2!D#\ linearized elastostatics is considered in the framework of
the hierarchical modelling with the help of the energy projection method[ It is shown that the "0\0\1#!bending
model is the {simplest| asymptotically correct model in the hierarchical family\ i[e[ the distance between the
solution of the 2!D problem and the model!solution in the energy norm tends to zero for vanishing plate
thickness h while using unmodi_ed\ 2!D material laws[

The formulation of the "0\0\1#!bending model and the mechanical signi_cance of its ingredients are
discussed[ We present error estimates for the deviation of the "0\0\1#!solution from the Kirchho} solution
as well as from the 2!D!solution\ by using the "0\0\1#!energy norm and the 2!D!energy norm\ respectively[
The analysis leads to zh as order of convergence[ The results are illustrated by a numerical example[
Þ 0888 Elsevier Science Ltd[ All rights reserved[

Keywords] Plate bending ^ Energy projection method ^ Polynomial approximation ^ Asymptotic correctness ^ 2!D!material laws

0[ Introduction

0[0[ Remarks on the history of plate modellin`

The problem of thin elastic plate bending has been a challenging subject to generations of
scientists\ both engineers and mathematicians\ throughout the past centuries[ From the _rst e}orts
by Cauchy and Poisson some two hundred years ago\ up to higher!order shear deformation
theories and the asymptotic analysis for the 2!D formulation\ developed in the second half of the
twentieth century\ there have been innumerable di}erent approaches[

The _rst usable plate bending theory was presented by Kirchho} "0749#[ The theory utilized the
assumption that the normal to the mid!plane remains normal during deformation\ thus neglecting
transverse shear strain e}ects[ In the middle of the present century\ Reissner "0833# and Mindlin
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"0840# independently developed plate bending formulations which considered approximately the
e}ect of transverse shear deformations by giving up Kirchho}|s normality constraint[ Mindlin|s
formulation can be interpreted as a "0\0\9#!model\ because the displacement assumptions are linear
for the two in!plane displacements and constant for the transversal de~ection[ Both\ Kirchho}|s
and Mindlin|s models are based on the hypothesis s22 � 9 which implies that a modi_cation of the
2!D material equations is needed to obtain sensible results\ i[e[ the correct set of di}erential
equations[

The success of plate "and shell# formulations\ utilizing a kinematic description of the shell body
due to Reissner and Mindlin in the recent past\ can be set down to the fact that these are much
better suited for the use in a _nite element formulation[ In the past thirty years there has been a
rapid development of corresponding plate and shell _nite elements[

Also around the middle of the present century the mathematical analysis of the modelling error
and the justi_cation of plate models via asymptotic analysis gained more and more signi_cance[
Indeed\ Morgenstern "0848# was the _rst to prove that the Kirchho} model is the correct asymptotic
limit of the 2!D model as the thickness of the plate tends to zero[ A systematic investigation of this
convergence was done by the group around Ciarlet "see Ciarlet\ 0889 for a survey and further
references#[ Thus\ it was shown that the Kirchho} assumptions do not have to be made intuitively
but can be derived from 2!D elasticity theory as the limiting case in asymptotic analysis[ Moreover\
Babus³ka and Pitka�ranta "0889# presented energy error estimates for the deviation of the Kirchho}
solution to the 2!D!solution and the solution of the Mindlin plate model\ respectively\ using
Morgenstern|s technique[ Many papers since the early sixties dealt with the asymptotic analysis
by applying singular perturbation techniques to the 2!D formulation starting with Friedrichs and
Dressler "0850# and Gol|denveizer and Kolos "0854#[ In particular the in~uence of the boundary
layer had to be studied carefully[ Shoikhet "0865# derived estimates between the 2!D solution and
an approximation via asymptotic analysis even in the case of certain nonlinear constitutive laws
by generalizing Morgenstern|s approach[ More recently a full discussion of the asymptotics of the
plate problem for mid!planes with smooth boundaries has been given by Nazarov and Zorin "0878#
and Dauge and Gruais "0885\ 0887#[ Moreover\ the asymptotics of the Mindlin model was
thoroughly analyzed by Arnold and Falk "0885# and by Bathe and Ha�ggblad "0889#[

Throughout the history of plate analyses there has been an interest in higher order formulations
in order to improve accuracy for the analysis of thick and also laminated plates[ Such a formulation
was probably presented _rst by Hildebrand in 0838\ see Reissner "0875#[ He introduced a "0\0\1#!
model\ i[e[ the transversal displacement was assumed to vary quadratically across the thickness[
In the sequel there have been attempts to develop even more sophisticated formulations "see Lo et
al[\ 0866 for a 11nd!order theory# up to polynomial expansions of arbitrary order "Naghdi\ 0861 ^
among others#[ However\ at that time these plate theories did not gain signi_cance in practical
analysis\ because they were too elaborate[ With the recent developments in computational mech!
anics\ however\ these higher order models became more and more important[ At the beginning of
the nineties the _rst plate and shell _nite elements\ using a "0\0\1#!kinematics have been presented
"Bu�chter et al[\ 0883 ^ Parisch\ 0882 ^ Sansour\ 0884 ^ among others#[ Here\ the driving force was at
_rst not the improvement of accuracy but the fact that 2!D constitutive laws could be applied
without modi_cation[ Thus\ the door was opened to true 2!D shell analysis\ including large strains
and the application of any arbitrary material law[ On the other hand\ the computational e.ciency
and mechanical clarity of a 1!D formulation has been retained[
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This lasting progress in numerical analysis and computer technology also led to a growing
interest in creating a hierarchy of models of increasing accuracy and complexity[ In the case of
homogeneous plates admissible displacement _elds that are polynomial with respect to the thickness
variable can be used[ Hierarchical models obtained by the energy projection method have been
studied extensively by Babus³ka and Li "0880\ 0881# and by Schwab "0884\ 0885#[ This approach
can be considered as a generalization of the higher!order shear deformation theories[ It is well!
known that for the lower degree models the constitutive law must be modi_ed in order to have
asymptotic correctness[ This phenomenon has been studied in some generality by Paumier and
Raoult "0886#\ where it is shown that one requires at least polynomials of degree one for the
horizontal displacements and quadratic polynomials for the transversal de~ections for the mini!
mum energy models in order to have consistency with the Kirchho} model in the limit of vanishing
thickness[ In fact\ they proved necessary and su.cient conditions for the asymptotic correctness
of minimum energy models\ including the "0\0\1#!model as a special case[ A more general hierarchy
of models based on the HellingerÐReissner principle is formulated and analyzed by Alessandrini
et al[ "0887#[

0[1[ Outline

The present paper focuses on the discussion of the "0\0\1#!model with emphasis on the appli!
cability of unmodi_ed 2!D material laws[ We start with the formulation of the plate problem
within the framework of 2!D\ linearized elastostatics[ Dimensional reduction is achieved by energy
projection of the 2!D displacement _eld on a closed subspace of admissible displacements\ namely
polynomials with respect to the thickness variable "Section 1#[ Increasing the space of admissible
displacements\ a hierarchy of nested spaces and models is obtained[ This concept is nothing else
than a particular Galerkin method\ or some p!method within a _nite element formulation "see
Babus³ka and Li\ 0880#[ We show that the classical plate models "Kirchho}\ Mindlin# are not
members of the hierarchy\ although the Mindlin plate model can be understood as the "0\0\9#!
model by energy projection if the material law is appropriately modi_ed[

In Section 2 the motivation for a plate model is given which is able to handle unmodi_ed 2!D
constitutive laws[ As an example of such a model\ one special member of the hierarchical family\
namely the "0\0\1#!model\ is described in detail[ This model is already well established in numerical
_nite element analysis of plates and shells "see e[g[ Bu�chter et al[\ 0883#[ Its governing di}erential
equations\ namely the Euler equations of the underlying variational principle\ are formulated in
terms of stress resultants\ as it is common in engineering literature[ This notation facilitates the
discussion of the mechanical signi_cance of similarities and di}erences to classical plate models\
like Kirchho}|s or Mindlin|s[

Our main contribution is the re_nement of the asymptotic analysis of the "0\0\1#!model for
plates and the proof of its asymptotic correctness in terms of rigorous asymptotic estimates given
in Section 3[ The proof begins with the formulation of the plate problem by means of variational
principles formulated in stress resultants and {generalized strains|[ As in the above mentioned
proofs of the asymptotic correctness of Kirchho}|s and Mindlin|s models "Morgenstern\ 0848 ^
Babus³ka and Pitka�ranta\ 0889#\ the theorem of Prager and Synge "0836# is used[ This allows us to
estimate the error without explicit knowledge of the 2!D solution[ The application of the theorem
only requires the formulation of admissible stresses and strains\ satisfying the equilibrium and



A[ Ro�ssle et al[ : International Journal of Solids and Structures 25 "0888# 1032Ð10571035

geometry equations\ respectively\ but not necessarily the material law[ The calculation of these
appropriate statically and geometrically admissible quantities requires the explicit calculation of
certain boundary corrector terms\ depending on the boundary conditions[ In this paper this is
done for the case of a hard clamped plate[ The last part of the proof consists of _nding a correlation
between the energy norms of the "0\0\1#!model and the 2!D problem\ in order to obtain an error
estimate in the 2!D!energy norm[

A numerical example "Section 4# not only con_rms the asymptotic behavior of the "0\0\1#!model\
but also illustrates its di}erence to the Mindlin model in the range of thick plates[

1[ Hierarchical modelling*the energy projection method

1[0[ The 2!D formulation

In what follows\ we will make use of index notation together with Einstein|s summation conven!
tion[ Latin indices vary from 0Ð2\ Greek indices from 0Ð1[

The plate problem is here considered as a boundary value problem of 2!D linearized elastostatics
in the domain

V M v×0−
h
1

\
h
11

of thickness h with the lateral boundary surface

G9 M g×0−
h
1

\
h
11\ g � 1v[

Here v W R1\ the mid!plane of the plate\ denotes a plane\ bounded domain with Lipschitz boundary
g[ Furthermore\ we de_ne the faces of the plate

G2 M v×62
h
17[

Then the 2!D plate problem consists of _nding a displacement _eld u"x\ y\ z# ] V : R2 which satis_es
the following governing equations ]

"0# Equilibrium conditions ]

Lu � −div sðuŁ � f in V "0#

with the symmetric stress tensor

sðuŁ � sijðuŁei
& ej

and the volume forces f[
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"1# Constitutive equations "Hookes|s law# ]

sðuŁ � AoðuŁ "1#

with a fourth order tensor A of elasticities and the linearized strain tensor

oðuŁ � oijðuŁei
& ej\ oijðuŁ �

0
1 0

1ui

1xj

¦
1uj

1xi1[
"2# Essential and natural boundary conditions at the lateral side[ Although a large variety of

boundary conditions may be considered\ for the sake of simplicity we will restrict ourselves in
the following to the case of a plate hard clamped along its lateral side "i[e[ Dirichlet conditions
on G9#

B9u � g9u � 9 on G9\ "2#

where g9 denotes the trace operator[
"3# Prescribed normal tractions on the faces ]

sðuŁ = n � p2 on G2\ "3#

where n denotes the exterior unit normal vector to G2 W 1V[

It is convenient to write the six components of s and o as column vectors in R5\ where the sij refer
to the canonical basis

s"u# � "s00\ s11\ s22\ s01\ s02\ s12#T\ o"u# � "o00\ o11\ o22\ o01\ o02\ o12#T[

Then Hooke|s law "1# for homogeneous and isotropic materials can be written in simpli_ed form

s"u# � Ao"u# M

F

G

G

G

G

G

G

G

f

l¦1m l l 9 9 9

l l¦1m l 9 9 9

l l l¦1m 9 9 9

9 9 9 1m 9 9

9 9 9 9 1m 9

9 9 9 9 9 1m

J

G

G

G

G

G

G

G

j

o"u#\ "4#

where l � ðEn:""0−1n#"0¦n##Ł and m � ðE:"1"0¦n##Ł are the Lame� constants "n denotes Poisson|s
ratio and E Young|s modulus#[ In this notation A is a symmetric\ positive de_nite 5×5 matrix[

The variational solution of the plate problem is\ according to the principle of minimum potential
energy of elastostatics\ the displacement _eld u ] V:R2 minimizing the potential energy

P"u# � 0
1
B"u\ u#−F"u# "5#

within the set

H"V# � "u $ ðH0"V#Ł2 = u � 9 on G9# "6#

of admissible displacement _elds[ Here the symmetric bilinear form B"=\ =# is given by
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B"u\ v# � gV
oðvŁ ]sðuŁ dV for s\o $ ðL1"V#Ł2[ "7#

For given surface tractions p2 $ ðL1"v#Ł2 on the faces G2 and volume forces f $ ðL1"V#Ł2\ we de_ne
the linear and continuous load functional F"=# by

F"u# � gV
u"x\ y\ z#Tf "x\ y\ z# dV

¦gv 6p
¦"x\ y#Tu 0x\ y\

h
11¦p−"x\ y#Tu 0x\ y\ −

h
117 dx dy[ "8#

Clearly\ H"V# is a closed\ linear subspace of ðH0"V#Ł2 and\ thus\ a Hilbert space equipped with the
energy scalar product B"=\ =# and the corresponding energy norm >u>e"2!D# M "B"u\ u##0:1 "see The!
orem 1[0 in Schwab\ 0885#[ Since here the variational and weak formulations are equivalent\ each
minimizer u $ H"V# of "5# satis_es the equations in weak formulation

B"u\ v# � F"v# [v $ H"V#[ "09#

Existence and uniqueness of a weak solution of "09# then follow from the Riesz representation
theorem in H"V#[ We refer to Schwab "0884\ 0885# for details concerning existence and uniqueness
of variational or weak solutions for di}erent boundary conditions "2# on the lateral side[

The variational solution u $ H"V# of the plate problem can be decomposed into a membrane
part uI"x\ y\ z# and a bending part uII"x\ y\ z# in the following manner ]

uI
a"x\ y\ z# � uI

a"x\ y\ −z#\ uI
2"x\ y\ z# � −uI

2"x\ y\ −z#

and

uII
a "x\ y\ z# � −uII

a "x\ y\ −z#\ uII
2"x\ y\ z# � uII

2"x\ y\ −z#[

The corresponding spaces of admissible displacement _elds will be denoted by HI"V# and HII"V#\
respectively[ These subspaces of H"V# are closed and orthogonal with respect to the scalar product
B"=\ =# on H"V#\ i[e[

H"V# � HI"V# $ HII"V# or B"u\ v# � 9 [u $ HI"V#\ v $ HII"V#[

Thus\ uI"x\ y\ z# and uII"x\ y\ z# can be obtained independently of each other provided the load
functional F"u# can be split correspondingly

F"u# � FI"u#¦FII"u#[

The corresponding membrane and bending loads are given by

f I
a"x\ y\ z# � 0

1
" fa"x\ y\ z#¦fa"x\ y\ −z##\ f I

2"x\ y\ z# � 0
1
" f2"x\ y\ z#−f2"x\ y\ −z##\

pI
a"x\ y# � 0

1
"p¦

a "x\ y#¦p−
a "x\ y##\ pI

2"x\ y# � 0
1
"p¦

2 "x\ y#−p−
2 "x\ y##

and
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f II
a "x\ y\ z# � 0

1
" fa"x\ y\ z#−fa"x\ y\ −z##\ f II

2"x\ y\ z# � 0
1
" f2"x\ y\ z#¦f2"x\ y\ −z##\

pII
a "x\ y# � 0

1
"p¦

a "x\ y#−p−
a "x\ y##\ pII

2"x\ y# � 0
1
"p¦

2 "x\ y#¦p−
2 "x\ y##[

1[1[ Hierarchical plate models

A method often used for deriving a hierarchy of plate models is the projection method\ whereby
the reduced models are obtained by projecting the 2!D displacement _eld on a closed subspace of
admissible displacements\ namely displacements that are of special form with respect to the
thickness variable[ Therefore\ let n $ N2

9 be a three!vector of non!negative integers[ We approximate
each component ui"x\ y\ z# of the displacement _eld u"x\ y\ z# by an asymptotic series of the form

un
i "x\ y\ z# � s

ni

k�9

Xn
ik"x\ y#cik 0

1z
h 1\

where in general ci � "cik"z##9¾k¾ni
\ denote vectors of ni¦0 linearly independent basis functions

in H0"−0\ 0#[ For the energy projection method we choose a Legendre series in z of degrees less
than or equal to ni[ With increasing n\ this creates a hierarchy of models[ Let us denote by uh and
un

h the solution of the 2!D problem and the n!model of the plate with thickness h\ respectively[
Then we require the hierarchy of models to satisfy the following properties[

"A# The exact solutions of the hierarchical models un
h converge to the exact solution of the problem

of elasticity uh for _xed h ]

>uh−un
h>

>uh>
: 9 for n : �\ "00#

where n : � means n0\ n1\ n2 : �[ If this property is ful_lled we say that the hierarchy is
consistent[

"B# The exact solution of every hierarchical model un
h converges for every _xed n to the same limit

as the exact solution of the problem of elasticity uh with plate thickness h when h approaches
zero ]

>uh−un
h>

>uh>
: 9 for h : 9[ "01#

In this case we say that the hierarchical model is asymptotically correct[ In Paumier and
Raoult "0886# for property "B# the word {consistent| is used\ but in the authors| opinion this
expression is more suitable for property "A#[

Preferably but not necessarily we would like to have

>uh−un
h> ¾ >uh−um

h > for n a m\

where we write n a m i} ni − mi\ i � 0\ 1\ 2\ for n\ m $ N2
9[ In "00# and "01# mostly*but not exclus!

ively*the energy norm is considered[
Let us describe now the energy projection method to get a hierarchy of plate models[ Here\

hierarchical plate models are obtained by semidiscretization of the plate problem "09# in transverse
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direction and energy projection[ The function un"x\ y\ z#\ the solution of the dimensionally reduced
model of order n\ is any minimizer of the total energy P"u# in "5# within the subspace H"n# W H"V#
of admissible displacement _elds of the form

un
i "x\ y\ z# � s

ni

k�9

Xn
ik"x\ y#cik 0

1z
h 1� Xn

i "x\ y#Tci 0
1z
h 1\ i � 0\ 1\ 2\ "02#

which is in fact the Galerkin approximation of the 2!D displacement _eld within the space H"n#[
Here the coe.cient functions Xn

ik"x\ y# $ H0"v# may be considered as to be generalized rotations
and de~ections[ In the case of homogeneous materials with the constitutive law "4# we select
Legendre polynomials of degree k as director functions cik"1z:h# � Lk"1z:h#[ The space
H"n# W H"V# is a closed\ linear subspace and\ thus\ a Hilbert space "see also Proposition 2[0 in
Schwab\ 0885#[ This implies again for every n existence and uniqueness of a dimensionally reduced
solution u"n# $ H"n#[ Hence we have

Lemma 1[0[ ]

For every n $ N2
9 there exists a uniquely determined\ dimensionally reduced solution u"n# $ H"n#[

In the following proposition we recall some basic properties of the hierarchical plate models
from Proposition 2[1 in Schwab "0885#[

Proposition 1[0[ ]

"0# Optimality of the n!model[ There holds the estimate

>u−u"n#>e"2!D# ¾ >u−v>e"2!D# [v $ H"n#[ "03#

"1# Let n a m[ Then there holds

>u−u"n#>e"2!D# ¾ >u−u"m#>e"2!D#\ "04#

i[e[ an increase of the model order never increases the modelling error\ which is the preferable
property mentioned above[
"2# Convergence of the hierarchy of n!models towards the 2!D problem at any _xed\ positive

thickness h ]

lim
n:�

>u−u"n#>e"2!D# � 9[ "05#

This is the consistency condition "A#[

The hierarchical plate models are obtained by energy projection onto H"n# and can consequently
be split into a membrane part uI"n# and a bending part uII"n# as the 2!D solution[ The membrane
and bending parts are obtained independently of each other by the solutions of

uj"n# $ Hj"n# B"uj"n#\ v# � Fj"v# [v $ Hj"n# "06#

with Hj"n# � H"n# K Hj"V#\ j $ "I\ II#[ In general\ because of the symmetry properties of the
Legendre polynomials\ we have the following model orders in dependence on the maximal poly!
nomial degree q in the z!direction

n � "1ðq:1Ł\ 1ðq:1Ł\ 1ð"q−0#:1Ł¦0# for j � I\



A[ Ro�ssle et al[ : International Journal of Solids and Structures 25 "0888# 1032Ð1057 1040

Table 0
Model orders n for membrane and bending models in dependence on the maximal
polynomial degree q

j q� 0 q � 1 q � 2 q � 3 q � 4 q � 5

I "9\9\0# "1\1\0# "1\1\2# "3\3\2# "3\3\4# "5\5\4#
II "0\0\9# "0\0\1# "2\2\1# "2\2\3# "4\4\3# "4\4\5#

n � "1ð"q−0#:1Ł¦0\ 1ð"q−0#:1Ł¦0\ 1ðq:1Ł# for j � II\

where ðxŁ denotes the Gaussian brackets\ i[e[ the largest integer ¾x[
Although Mindlin|s and Kirchho}|s model can be derived by the energy projection method\ the

embedding of these classical models into our hierarchy "02# fails[ Following Mindlin "0840#\ we
consider the bending of a plate "i[e[ j � II# subject to normal loading p"x\ y# "see Fig[ 0#\ i[e[

f 0 9\ pI 0 9\ pII
a 0 9\ pII

2"x\ y# � p"x\ y#[ "07#

Motivated by the ansatz for the displacement _eld in the Mindlin model one would suspect that
this model coincides with the hierarchical bending model of order n � "0\0\9#[ This\ however\ is

Fig[ 0[ Thin plate under bending[



A[ Ro�ssle et al[ : International Journal of Solids and Structures 25 "0888# 1032Ð10571041

not the case[ On the other hand\ the "0\0\9#!model of the hierarchy is not asymptotically correct\
i[e[ it does not satisfy condition "01#[ Paumier and Raoult "0886# investigated this fact in a more
general setting[

1[2[ Hierarchical models with modi_ed constitutive laws

In order to be able to embed the classical Kirchho} and Mindlin models into a hierarchical
family\ the hierarchical models corresponding to "02# are extended in the sense that one allows for
modi_cations of the material law[ These modi_cations should be carried out in a way that property
"B# is satis_ed[ Hence\ if we want to guarantee condition "01# for the "0\0\9#!model of an extended
hierarchy as well\ it has to coincide e[g[ with the Mindlin model[ If we choose the representation

HII"0\0\9# � "u $ H"V# = u0 � zux\ u1 � zuy\ u2 � w with ux\ uy\ w $ H0"v##\

and replace the matrix A in Hooke|s law "4# by

A	 �

F

G

G

G

G

G

G

G

f

L¦1m L 9 9 9 9

L L¦1m 9 9 9 9

L L 1m 9 9 9

9 9 9 1m 9 9

9 9 9 9 1km 9

9 9 9 9 9 1km

J

G

G

G

G

G

G

G

j

"08#

with the modi_ed Lame� constant L � "1ml#:"1m¦l# and a single shear correction factor k × 9\
then we obtain the Mindlin!system as the EulerÐLagrange equations of the energy projection
within the space HII"0\0\9#[ Note that the requirement of asymptotic correctness for the "0\0\9#!
ansatz implies a speci_c class of material matrices which contains A	 in "08#[

Introducing the space of admissible Kirchho} displacements

HK � "u ] V : R2 = u0 � −z 1xw\ u1 � −z 1yw\ u2 � w with w $ H1"v##\

we get the Kirchho} model as the minimization problem for the potential energy P"u# with the
modi_ed matrix A	 in Hooke|s law within the set HK[ The EulerÐLagrange equation for w"x\ y# is
the classical plate equation

DD1w � p in v\ "19#

where the ~exural rigidity of the plate D is given by D � ðh2"L¦1m#Ł:01[ But\ if we insert the 2!D!
displacements corresponding to the Kirchho} or the Mindlin solution into the 2!D!total energy
P\ this expression does not coincide with the total Kirchho} or Mindlin energy\ respectively[ We
emphasize that the Kirchho} model cannot be obtained as a member of the hierarchy without
either imposing the Kirchho} constraint in the trial space\ or taking into account additional limit
considerations "h : 9#[
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2[ Plate models for 2!D constitutive laws

2[0[ Motivation

It is well known\ and also clear from the previous remarks that the Mindlin plate model requires
a modi_cation of the material law to ensure convergence to the 2!D solution with decreasing
thickness[ Apart from the simple introduction of a shear correction factor\ this modi_cation
consists of a condensation of the material law[ The assumption

s22 � 9

leads to

o22 �
−l

l¦1m
"o00¦o11#

and therefore viz "08#

s00 � 0
1ml

1m¦l
¦1m1 o00¦0

1ml

1m¦l1 o11

s11 � 0
1ml

1m¦l1 o00¦0
1ml

1m¦l
¦1m1 o11[

Note that now the resulting material law is described by a 4×4 matrix\ whose components are not
identical to those given in "4#\ although the resulting di}erential equations are equivalent leading
to an asymptotically correct model[ However\ these simple algebraic manipulations are only valid
for a linearly elastic material description[ For more sophisticated constitutive models\ as e[g[
nonlinear material laws\ the analytical condensation of s22 may be di.cult to perform or even
impossible[ The numerical realization of this procedure may on the other hand be computationally
expensive\ if possible at all[ If such material models are required for a sensible _nite element
analysis of certain structural problems\ then 2!D\ so!called bricks with a linear displacement _eld
across the thickness can be used[ On the other hand\ these elements have the disadvantage of being
computationally much more expensive than usual plate or shell elements\ and behave badly for
thin!walled structures due to {Poisson!locking|[

Therefore\ one needs plate "or shell# models which can be used together with unmodi_ed 2!D
constitutive laws[ The simplest model in the above hierarchy of plate models with this property is
the "0\0\1#!model[ The _rst reference\ known to the authors\ where such a model is introduced is
due to Hildebrand\ Reissner and Thomas in 0838\ a remark can be found in Reissner "0875#[
Certainly\ at that time the motivation for developing such models was di}erent from ours[ However\
2!D plate and shell models did not really gain signi_cance until the development of the _nite
element method facilitated structural analyses with complicated material laws[

In the meantime\ the "0\0\1#!model is an established model in large strain shell analysis with
_nite elements[ Three!dimensional shell models have been successfully applied to both\ linear and
nonlinear analyses of plates and shells "see e[g[ Bu�chter et al[\ 0883 ^ Bischo} and Ramm\ 0886 ^
Parisch\ 0882 ^ Sansour\ 0884#[ For plates\ consisting of linearly elastic\ isotropic\ homogeneous
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materials\ a full asymptotic analysis of the "0\0\1#!model "as in Arnold and Falk\ 0885 for Mindlin|s
model# including the computation of the boundary layer terms is given in Alessandrini "0880#[ A
_nite element method for the "0\0\1#!plate model including an error analysis is described in
Alessandrini "0880# and Alessandrini and Falk "0881#[ Unfortunately\ such a mathematical back!
ground is not yet available for shells[

2[1[ The "0\0\1#!plate model

In this section we give the derivation of the "0\0\1#!model for plates as a member of the hierarchy
described in Section 1[1[ Since we are only interested in the case of bending and due to technical
reasons we restrict ourselves to the special load case described in "07#[ The mathematical for!
mulation of this model rests on the displacement assumption according to the de_nition\ given in
"02#\ i[e[

HII"0\0\1# � "u $ H"V# = u0 � zux\ u1 � zuy\ u2 � w9¦z1w1# "10#

with ux\ uy\ w9\ w1 $ H0"v#[ The linearized strain tensor is obtained from the partial derivatives of
the displacements

o00 �
1u0

1x
� z

1ux

1x
\ o11 �

1u1

1y
� z

1uy

1y
\ o22 �

1u2

1z
� 1zw1\

o01 �
0
1 0

1u0

1y
¦

1u1

1x 1�
0
1 0z

1ux

1y
¦z

1uy

1x1\

o02 �
0
1 0

1u0

1z
¦

1u2

1x 1�
0
1 0ux¦

1w9

1x
¦z1 1w1

1x 1\

o12 �
0
1 0

1u1

1z
¦

1u2

1y 1�
0
1 0uy¦

1w9

1y
¦z1 1w1

1y 1[
Basically\ the strain tensor is a function of x\ y and z[ To obtain a 1!D description "x\ y# of the
strain state\ one may introduce equivalent {generalized strains|[ These are the "physical# curvatures\
corresponding to bending and twisting\ respectively\

kxx M
1ux

1x
\ kyy M

1uy

1y
\ kxy M

1ux

1y
¦

1uy

1x
\ "11#

the transverse shear strains

gx M ux¦
1w9

1x
\ gy M uy¦

1w9

1y
\ dx M

1w1

1x
\ dy M

1w1

1y
"12#

and a normal strain component in z!direction

b M 1w1 "13#

representing the thickness change during deformation[ These are the kinematic relations[
As in a classical plate formulation\ stress resultants can be de_ned by integrating the components
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of the 2!D stress tensor across the thickness[ Thus\ the energetically conjugated values to the
{generalized strains| are given by the bending and twisting moments

mxx M g
h:1

−h:1

zs00 dz\ myy M g
h:1

−h:1

zs11 dz\ mxy M g
h:1

−h:1

zs01 dz\

the transverse shear forces

qx M g
h:1

−h:1

s02 dz\ qy M g
h:1

−h:1

s12 dz\ rx M g
h:1

−h:1

z1s02 dz\ ry M g
h:1

−h:1

z1s12 dz

and the normal stress in thickness direction

v M g
h:1

−h:1

zs22 dz[

The extension with respect to Mindlin|s "0\0\9#!model predominantly in~uences stresses in
thickness direction[ In particular\ the polynomial order of the shear stress distribution is increased\
and a new transverse normal stress component shows up[ The moments are identical to those of
the Mindlin plate model[ It is remarkable that for homogeneous materials the transverse shear
stresses s02 and s12 vary quadratically across the thickness\ instead of constant\ as in Mindlin|s
model[ Thus\ a more realistic modelling of the transverse shear stress distribution is achieved[ In
fact\ this is the apparent explanation why with this model no shear correction factor is needed[

It should also be noted that v is not a stress resultant in the conventional sense\ because the
corresponding cross section is not parallel to the direction of integration; Thus\ v must not be
described as a force\ or couple\ like for example qx or mxx\ respectively\ but merely as an {integrated
stress component|[ The higher order shear terms rx and ry\ on the other hand\ are self!equilibrated
{true| stress resultants\ although they do not show up in classical plate models[

With these de_nitions at hand\ the equations of static equilibrium are given by

1mxx

1x
¦

1mxy

1y
−qx � 9

1mxy

1x
¦

1myy

1y
−qy � 9

1qx

1x
¦

1qy

1y
¦p � 9

1rx

1x
¦

1ry

1y
−1v¦

h1

3
p � 9[ "14#

The _rst three equations correspond exactly to the Mindlin plate model[ Only the fourth equation\
representing the equilibrium of forces in direction of thickness contains the new stress resultants
and is decoupled from the others[ Inserting the relations given by the material law\ compare "15#\
and the kinematic eqns "11#Ð"13# into the static equilibrium "14# leads to a system of elliptic
di}erential equations for the {generalized displacements| ux\ uy\ w9 and w1 of the "0\0\1#!plate model\
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which is nothing but the system of EulerÐLagrange equations for the energy projection onto the
space HII"0\0\1#[

3[ Asymptotic analysis of the "0\0\1#!model

In order to prove that the "0\0\1#!model is asymptotically correct\ the same techniques are
applied as in Morgenstern "0848# and Babus³ka and Pitka�ranta "0889#[ First\ let us summarize
some basic characteristics of variational formalisms and energy principles associated with the
"0\0\1#!plate!bending model\ which will be needed in the proof[ In analogy with the 2!D formulation
these will be called the principle of minimum potential energy "energy principle# and the principle
of minimum stress energy "complementary energy principle#[ We will use this terminology for the
formulation of the variational principles of the Kirchho} model as well[ The application of the
two energy principles or theorem of Prager and Synge "0836# to justify plate theories was initiated
in the pioneering work of Morgenstern "0848#\ where it was used to prove convergence of the 2!D
solution towards the Kirchho} solution when the thickness of the plate tends to zero[ We will
formulate the theorem of Prager and Synge "0836# for the "0\0\1#!model\ which will be used to
estimate the distance between the Kirchho} and the "0\0\1#!solution in the energy norm[

For the sake of simplicity\ we only consider the case of the bending of a hard clamped plate
under normal surface loading p"x\ y# compare "07# and Fig[ 0[ Other cases can be handled similarly\
although technical di.culties may show up[ In this simple case the geometrically admissible
quantities for the "0\0\1#!model are given by the space V"0\0\1# � ðH0

9"v#Ł3[ In the following we will
give a formulation\ in which we already have divided by the factor h2[ Therefore let p � h2`[
Thus\ we have guaranteed that the solution of the "0\0\1#!model converges for h : 9 towards an
expression\ which neither vanishes nor is in_nite[ The scaled stressÐstrain!relation corresponding
to this formulation then reads as follows

"m\ v\ q\ r#T � T"k\ b\ g\ d#T\ "15#

where the tensor T ] ðL1"v#Ł7 : ðL1"v#Ł7 is given by the matrix

T �
0
01

F

G

G

G

G

G

G

G

G

G

G

f

l¦1m l l 9 9 9 9 9

l l¦1m l 9 9 9 9 9

l l l¦1m 9 9 9 9 9

9 9 9 m 9 9 9 9

9 9 9 9 "01m#h1 m 9 9

9 9 9 9 m "2h1m#:19 9 9

9 9 9 9 9 9 "01m#:h1 m

9 9 9 9 9 9 m "2h1m#:19

J

G

G

G

G

G

G

G

G

G

G

j

\

which is invertible for m × 9\ "2l¦1m# × 9"E × 9\ −0 ³ n ³ 9[4#\ and T and T−0 are real and self!
adjoint[ For brevity we have used in "15# for the eight!vectors the notation
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"m\ v\ q\ r# � "mxx\ myy\ v\ mxy\ qx\ rx\ qy\ ry#

"k\ b\ g\ d# � "kxx\ kyy\ b\ kxy\ gx\ dx\ gy\ dy#[

This notation will be extensively used in the following[ Let us further introduce the two symmetric
bilinear forms ]

B"0\0\1#"w9\ w1\ ux\ uy ^ w½ 9\ w½ 1\ u½x\ u½y# � "ðk\ b\ g\ dŁT\ Tðk½ \ b½ \ g½\ d½ŁT#L1"v#\

where ðk\ b\ g\ dŁT\ ðk½ \ b½ \ g½\ d½ŁT\ are to be expressed by "11#Ð"13#\ w9\ w1\ ux\ uy\ w½ 9\ w½ 1\ u½x\ u½y $ H0
9"v# ^

and

A"0\0\1#"ðm\ v\ q\ rŁ ^ ðm½ \ v½\ q½\ r½Ł# � "ðm\ v\ q\ rŁT\ T−0ðm½ \ v½\ q½\ r½ŁT#L1"v#

with m\ m½ $ ðL1"v#Ł2 ^ q\ r\ q½\ r½ $ ðL1"v#Ł1 ^ v\ v½ $ L1"v#[ Here "=\ =#L1"v# is the L1"v#!scalar product[
Finally\ we de_ne the load functional

F"0\0\1#"w9\ w1\ ux\ uy# � gv

` 0w9¦
h1

3
w11 dx dy

for ` $ L1"v#[ Then the "0\0\1#!formulation of the principle of minimum potential energy states ]
Find the quadruple "w9\ w1\ ux\ uy#T $ V"0\0\1# minimizing the functional

P"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y# � 0
1
B"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y ^ w½ 9\ w½ 1\ u½x\ u½y#−F"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y# "16#

within the space V"0\0\1# for given ` $ L1"v#[ Existence and uniqueness of "w9\ w1\ ux\ uy#T $ V"0\0\1#

follow immediately from the derivation of the "0\0\1#!model as hierarchical model\ see Lemma 1[0[
The complementary energy principle for the "0\0\1#!model reads ]

Find the 7!tuple "m\ v\ q\ r#T $ ðL1"v#Ł7 minimizing the functional

PC
"0\0\1#"ðm½ \ v½\ q½\ r½Ł# � 0

1
A"0\0\1#"ðm½ \ v½\ q½\ r½Ł ^ ðm½ \ v½\ q½\ r½Ł# "17#

within the space ðL1"v#Ł7 under the constraints "14# with ` instead of p[ Stress resultants
"m\ v\ q\ r#T $ ðL1"v#Ł7 satisfying the equilibrium conditions "14# with ` instead of p in the domain v

are called statically admissible[ We denote by S"0\0\1# W ðL1"v#Ł7 the space of all statically admissible
stress resultants[ For the solutions "w9\ w1\ ux\ uy#T and "m\ v\ q\ r#T of the minimization problems for
the functionals "16# and "17# the constitutive law "15# is valid\ i[e[ the solutions of the variational
problems above are related to each other via this material law[ This can be seen analogously as in
the 2!D!case\ compare Theorem 2[7 in Duvaut and Lions "0865#[ We will use this relation among
other things in the proof of Lemma 3[0[

By combining the two energy principles we are able to prove the following Lemma in analogy
with the theorem of Prager and Synge "0836# "see also Theorem 1 in Alessandrini et al[\ 0887 and
Theorem 2[6 in Schwab\ 0884#[ It will play a crucial role in the proof of Theorem 3[0[

Lemma 3[0[ ]
For any quadruple of geometrically admissible quantities "w½ 9\ w½ 1\ u½x\ u½y#T $ V"0\0\1# and for any 7!
tuple of statically admissible stress resultants "m½ \ v½\ q½\ r½#T $ S"0\0\1#\ which are not necessarily related
via the material law "15#\ the identity
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0
1
B"0\0\1#"w9−w½ 9\ w1−w½ 1\ ux−u½x\ uy−u½y ^ w9−w½ 9\ w1−w½ 1\ ux−u½x\ uy−u½y#

¦0
1
A"0\0\1#"ðm−m½ \ v−v½q−q½\ r−r½Ł ^ ðm−m½ \ v−v½\ q−q½\ r−r½Ł#

� P"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y#¦PC
"0\0\1#"ðm½ \ v½\ q½\ r½Ł# "18#

is valid[

Proof ]
From the principle of minimum potential energy\ i[e[ from the equivalence of variational and

weak formulation we get

B"0\0\1#"w9\ w1\ ux\ uy ^ w½ 9\ w½ 1\ u½x\ u½y# � F"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y#

for any "w½ 9\ w½ 1\ u½x\ u½y#T $ V"0\0\1#[ Analogously\ we obtain

A"0\0\1#"ðm\ v\ q\ rŁ ^ ðm½ −m\ v½−v\ q½−q\ r½−rŁ# � 9

for any "m½ \ v½\ q½\ r½#T $ S"0\0\1# from the complementary energy principle[ These relations are valid for
any given geometrically and statically admissible quantities[ From this the assertion follows in the
same manner as in the 2!D!case\ see e[g[ Theorem 2[6 in Schwab "0884#\ since the left!hand side of
"18# is equal to

ð0
1
B"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y ^ w½ 9\ w½ 1\ u½x\ u½y#−B"0\0\1#"w9\ w1\ ux\ uy ^w½ 9\ w½ 1\ u½x\ u½y#

¦0
1
A"0\0\1#"ðm½ \ v½\ q½\ r½Ł ^ ðm½ \ v½\ q½\ r½Ł#Ł¦ð0

1
B"0\0\1#"w9\ w1\ ux\ uy ^ w9\ w1\ ux\ uy#

−A"0\0\1#"ðm\ v\ q\ rŁ ^ ðm½ \ v½\ q½\ r½Ł#¦0
1
A"0\0\1#"ðm\ v\ q\ rŁ ^ ðm\ v\ q\ rŁ#Ł

� ðP"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y#¦PC
"0\0\1#"ðm½ \ v½\ q½\ r½Ł#Ł¦9[

As mentioned before we prove Theorem 3[0 in the case of a plate which is hard clamped along
its lateral side[ So it must be assumed that the mid!plane v W R1 is such that the solution of the
Dirichlet problem for Kirchho}|s plate eqn "19# is in the space H1

9"v# K H2"v#\ which requires e[g[
that v is a convex polygon[ "We refer to Blum and Rannacher "0879# and Melzer and Rannacher
"0879# for details[# Moreover\ we need variational formulations for the Kirchho} model\ anal!
ogously to "16# and "17#[ Since we are dealing with asymptotic analysis\ the same scaling with 0:h2

as in the formulation for the "0\0\1#!model is necessary[ The variational formulation for the
Kirchho} model corresponding to the principle of minimum potential energy reads ]

Find wK $ H1
9"v# such that wK minimizes the functional

PK"w# � gv 6
m"l¦m#
5"l¦1m#

"Dw#1¦
m

5 $0
11w
1x 1y1

1

−
11w

1x1

11w

1y1%7−`w dx dy

within H1
9"v# for given ` $ L1"v#[ We see that the solution wK does not depend on h[ The space

VK � H1
9"v# is the space of geometrically admissible Kirchho} de~ections in the case of the hard

clamped plate[ In order to give a stress!related variational formulation\ we consider the Kirchho}
stress resultants[ The static equilibrium equations are given by
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1mKxx

1x
¦

1mKxy

1y
−qKx � 9

1mKxy

1x
¦

1mKyy

1y
−qKy � 9

1qKx

1x
¦

1qKy

1y
¦` � 9 "29#

The stress resultants "mK\ qK#T � "mKxx\ mKxy\ mKyy\ qx\ qKy#T $ ðL1"v#Ł4 satisfying these equilibrium
conditions in the domain v are called statically admissible Kirchho} stress resultants in the hard
clamped case[ We denote by SK W ðL1"v#Ł4 the space of all statically admissible Kirchho} stress
resultants[ The variational formulation for the Kirchho} plate corresponding to the comp!
lementary energy principle states ]

Find the 4!tuple "mK\ qK#T $ SK minimizing the functional

PC
K"m\ q# � gv 6

2
m

"m1
xx¦1m1

xy¦m1
yy#−

2l

m"2l¦1m#
"mxx¦myy#17 dx dy

within the space SK[ By inserting the well!known relations for "mK\ qK#T in terms of wK and using
PK"wK# � −0

1
Ðv `wK dx dy we are able to formulate

Lemma 3[1[ ]

Let us denote by wK $ H1
9"v# the minimizer of PK"w# within H1

9"v# and by "mK\ qK#T $ SK the
minimizer of PC

k "m\ q# within SK[ These uniquely determined quantities thus represent the Kirchho}
solution[ Then the identity

PK"wK#¦PC
K"mK\ qK# � 9 "20#

is valid[
In the next step let us de_ne the "0\0\1#!energy norm

>w½ 9\ w½ 1\ u½x\ u½y ^ ðm½ \ v½\ q½\ r½Ł>1
E"0\0\1#] � B"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y ^ w½ 9\ w½ 1\ u½x\ u½y#

¦A"0\0\1#"ðm½ \ v½\ q½\ r½Ł ^ ðm½ \ v½\ q½\ r½Ł# "21#

for "w½ 9\ w½ 1\ u½x\ u½y ^ ðm½ \ v½\ q½\ r½Ł#T $ V"0\0\1#×S"0\0\1#[ From the fact that B"0\0\1# and A"0\0\1# are the energetic
scalar products on V"0\0\1# and S"0\0\1# it is clear that

>w½ 9\ w½ 1\ u½x\ u½y>1
e"0\0\1#] � B"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y ^ w½ 9\ w½ 1\ u½x\ u½y#

and

>ðm½ \ v½\ q½\ r½Ł>1
c"0\0\1#] � A"0\0\1#"ðm½ \ v½\ q½\ r½Ł ^ ðm½ \ v½\ q½\ r½Ł#

are the norms on V"0\0\1# and S"0\0\1#\ respectively\ and thus ^ >=>E"0\0\1# is indeed a norm on
V"0\0\1#×S"0\0\1#[ So we have with Lemma 3[0 the identity

>w9−w½ 9\ w1−w½ 1\ ux−u½x\ uy−u½y ^ ðm−m½ \ v−v½\ q−q½\ r−r½Ł>1
E"0\0\1#

� >w½ 9\ w½ 1\ u½x\ u½y ^ ðm½ \ v½\ q½\ r½Ł>1
E"0\0\1#−1F"0\0\1#"w½ 9\ w½ 1\ u½x\ u½y#\ "22#
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whenever "w½ 9\ w½ 1\ u½x\ u½y ^ ðm½ \ v½\ q½\ r½Ł#T $ V"0\0\1#×S"0\0\1#[ Note that the right!hand side is independent
of the solution of the "0\0\1#!model and\ thus\ the deviation to the Kirchho} solution can be
estimated without its explicit knowledge[ Our aim is to give such an estimate[ For this purpose
geometrically and statically admissible functions must be found\ which correspond to those of the
Kirchho} theory[

"0# Geometrically admissible quantities

The EulerÐLagrange equations of the "0\0\1#!variational model de_ne a singular perturbation
problem of an elliptic system for w9\ w1\ ux\ uy if h : 9[ Formal expansion of its solution provides
the leading terms which are used to choose the following geometrically admissible test functions

w½ 9 � wK\ u½x � −
1wK

1x
\ u½y � −

1wK

1y
\ w½ 1 �

l

1"l¦1m#
DwK¦ b"x\ y#

zxcxv
boundary corrector

[ "23#

Now we see that wK $ H2"v# is needed in order to have w½ 1 $ H0
9"v#[ Note that we have to ensure

that for any d × 9 a boundary corrector b"x\ y# $ H0"v# can be determined\ such that w½ 1 � 9 on 1v

and the inequalities

gv

b1"x\ y# dx dy ¾ Cd>DwK>1
H0"v#\ gv

=9w½ 1=1 dx dy ¾ Cd−0>DwK>1
H0"v# "24#

hold[ C × 9 is a constant independent of d and wK[ Such a b $ H0"v# can always be found "compare
Babus³ka and Pitka�ranta\ 0889 and Remark 2[01 in Schwab\ 0884#[ Thus\ we have ensured that the
quadruple "w½ 9\ w½ 1\ u½x\ u½y#T is in V"0\0\1#\ i[e[ geometrically admissible[ We remark that the expressions
for w½ 9\ u½x\ u½y and w½ 1 including the boundary correction term are exactly those which are obtained
from the asymptotic analysis via singular perturbation theory for the 2!D problem "compare
Nazarov and Zorin\ 0878 ^ Dauge and Gruais\ 0885\ 0887#[

"1# Statically admissible stress resultants

We take as a basis for the statically admissible "0\0\1#!functions the corresponding 2!D!functions
from Morgenstern "0848#[ We obtain

m½ ab � mKab\ v½ �
h1

09
`\ q½a � qKa\ r½a �

h1

19
qKa\ a\ b $ "x\ y#[ "25#

These stress resultants satisfy "14# with ` instead of p[ Hence\ we have "m½ \ v½\ q½\ r½#T $ S"0\0\1#\ i[e[ they
are statically admissible[

Evaluating the right!hand side of the identity "22# for the geometrically and statically admissible
quantities "23# and "25# and using "20# we obtain

0
5

"l¦1m# gv

b1 dx dy¦
mh1

79 gv

=9w½ 1=1 dx dy

¦gv

h1

09
` 0−

5l

m"2l¦1m#
"mKxx¦mKyy#¦

01"l¦m#
m"2l¦1m#

h1

09
`1 dx dy
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¦gv

5h1

4m
"q1

Kx¦q1
Ky# dx dy−gv

h1

1
`w½ 1 dx dy[

Let ` $ L1"v# be given arbitrarily[ Since wK satis_es the Kirchho} plate equation
ðm"l¦m#Ł:ð2"l¦1m#ŁD1wK � `\ a standard elliptic regularity estimate implies "see e[g[ Blum and
Rannacher\ 0879#

>DwK>H0"v# ¾ C0"v#
2"l¦1m#
m"l¦m#

>`>L1"v#\

>9"DwK#>L1"v# ¾ C0"v#
2"l¦1m#
m"l¦m#

>`>L1"v#[ "26#

We collect the terms in the right!hand side of "22#[ The inequalities "26#\ the CauchyÐSchwarz!
inequality and the choice d � h:3 in "24# enable us to estimate these terms separately as follows ]

"0#

0
5

"l¦1m# gv

b1 dx dy¦
mh1

79 gv

=9w½ 1=1 dx dy−gv

`
h1

1
b dx dy

¾ 0
4l¦05m

019
C1"v#h¦

h4:1

3
C2"v#1 >`>1

L1"v#

"1#

−gv

`
h1

3
l

l¦1m
DwK dx dy¦gv

h1

09
` 0−

5l

m"2l¦1m#
"mKxx¦mKyy1 dx dy

� −
2h1

19
l

l¦1m gv

`DwK dx dy ¾
8h1

19
l

m"l¦m#
C0"v#>`>1

L1"v#

"2#

gv

h3

099
01"l¦m#
m"2l¦1m#

`1 dx dy �
2h3"l¦m#

14m"2l¦1m#
>`>1

L1"v#

"3#

gv

5h1

4m
"q1

Kx¦q1
Ky# dx dy � gv

5h1

4m

m1"l¦m#1

8"l¦1m#1
=9"DwK#=1 dx dy ¾

5h1

4m
C1

0"v#>`>1
L1"v#

Collecting these estimates results in the following theorem[

Theorem 3[0[ ]

Let v W R1 be such that the solution wK of the Kirchho} plate equation with the boundary
condition that the plate is clamped along its lateral side is in H1

9"v# K H2"v#[ Let



A[ Ro�ssle et al[ : International Journal of Solids and Structures 25 "0888# 1032Ð10571051

"w9\ w1\ ux\ uy ^ ðm\ v\ q\ rŁ#T $ V"0\0\1#×S"0\0\1# be the solution of the "0\0\1#!plate!bending model and
"w½ 9\ w½ 1\ u½x\ u½y ^ ðm½ \ v½\ q½\ r½Ł#T $ V"0\0\1#×S"0\0\1# the geometrically and statically admissible functions
de_ned in "23# and "25#[ Then the estimate

>w9−w½ 9\ w1−w½ 1\ ux−u½x\ uy−u½y ^ ðm−m½ \ v−v½\ q−q½\ r−r½Ł>1
E"0\0\1# � O"h# "27#

is valid\ i[e[ the solution of the "0\0\1#!model converges for h : 9 with order zh in the "0\0\1#!
energy norm towards the Kirchho} solution[

In Theorem 3[0[ we estimated the di}erence between the solutions of the "0\0\1#!model and the
Kirchho} model in the "0\0\1#!energy norm[ However\ our original aim is an asymptotic estimate
between the solution of the "0\0\1#!model and the 2!D solution in the 2!D!energy norm[ Therefore\
we characterize now the relation between the "0\0\1#!energy norm and the 2!D!energy norm[ In
order to _nd this relation with the help of the relations between the 2!D! and the "0\0\1#!bilinear
forms\ we have to introduce a scaled stressÐstrain!relation in analogy to the "0\0\1#!formulation[
Let

A
 �
0

h2
A

with A given in "4#[ Its inverse exists for h × 9\ m × 9 and "2l¦1m# × 9[ This linear mapping
represents a scaled stressÐstrain!relation[ Hooke|s law then reads

s � A
o"u# or o"u# � A
−0s[

We de_ne the space of 2!D!geometrically admissible displacements

V2!D � H"V# � "u $ ðH0"V#Ł2 = u � 9 on G9#\

the scaled 2!D!load functional

F2!D"v# � gv

0
1

`"x\ y# 6v2 0x\ y\
h
11¦v2 0x\ y\ −

h
117 dx dy

and the space of 2!D!statically admissible stresses

S2!D � 6s $ ðL1"V#Ł2×2
sym b gv

s ] oðvŁ dV � F"v#[v $ V2!D7[
We introduce the bilinear forms

A2!D"s\ t# � gV
s ]A
−0 t dV and B2!D"u\ v# � gV

oðuŁ ]A
oðvŁ dV\

which represent the energetic scalar products on S2!D and on V2!D\ respectively\ and with their help
the energy norm

>u ^ s>1
E"2!D# � B2!D"u\ u#¦A2!D"s\ s#

on V2!D×S2!D[

>u>e"2!D# � zB2!D"u\ u# and >s>c"2!D# � zA2!D"s\ s#
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are the energy norm on V2!D and the complementary energy norm on S2!D\ respectively[ Obviously\
>=>e"2!D# is equivalent to >=>ðH0"V#Ł2 on V2!D by the Korn inequality and >=>c"2!D# is equivalent to
>=>ðL1"V#Ł2×2

sym
on ðL1"V#Ł2×2

sym [ In what follows we will give the choice of 2!D!displacements in terms of
"0\0\1#!quantities and of 2!D!stresses in terms of "0\0\1#!stress resultants such that B2!D and A2!D

coincide with B"0\0\1# and A"0\0\1#\ respectively[ In the case of B2!D this choice is straightforward[ If
we set

u001
0 � zux\ u001

1 � zuy\ u001
2 � w9¦z1w1

we have

>u001>1
e"2!D# � >w9\ w1\ ux\ uy>1

e"0\0\1#[

In the case A2!D the choice is not so obvious[ But with

s001
00 �

01

h2
zmxx\ s001

01 �
01

h2
zmxy\ s001

02 �
2
1h

qx−
019

h4
z1rx

s001
11 �

01

h2
zmyy\ s001

22 �
01

h2
zv\ s001

12 �
2
1h

qy−
019

h4
z1ry

>s001>1
c"2!D# � >ðm\ v\ q\ rŁ>1

c"0\0\1#

is obtained\ and indeed we are able to express the "0\0\1#!energy norm in terms of the 2!D!energy
norm of suitable chosen displacements and stresses[ Here u001 is a 2!D!geometrically admissible
displacement\ but unfortunately s001 is only in ðL1"V#Ł2×2

sym and not statically admissible\ since it
does not satisfy the static 2!D!equilibrium eqns "0# and "3#[

In order to estimate the di}erence between the 2!D solution and the solution of the "0\0\1#!
model in the 2!D!energy norm with the help of the estimate of the di}erence between the "0\0\1#!
and the Kirchho}!quantities we have to introduce admissible displacements and stresses generated
by quantities from the Kirchho} theory ]

"a# Displacements

uK
0 � −z

1wK

1x
\ uK

1 � −z
1wK

1y

uK
2 � wK¦z1 0

l

1"l¦1m#
DwK¦ b"x\ y#

zxcxv
boundary corrector

1\

where the boundary corrector b"x\ y# has to be chosen in such a way that uK is 2!D!geometrically
admissible and satis_es similar inequalities as in "24#[

"b# Stresses

We have to introduce two slightly di}erent Kirchho} stresses

sK
00 �

01

h2
zmKxx\ sK

11 �
01

h2
zmKyy\ sK

22 � 0
2
1h

z−
1

h2
z21 `
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sK
01 �

01

h2
zmKxy\ sK

02 � 0
2
1h

−
5

h2
z11 qKx\ sK

12 � 0
2
1h

−
5

h2
z11 qKy

and

sK
ij� � sK

ij for i\ j � 0\ 1\ 2\ i � j � 2\ sK
22� � 5:"4h#z`[

Only for i � j � 2 we have sK
ij−sK

ij� � 9 and hence

>sK−sK�>1
c"2!D# �

l¦m

699m"2l¦1m#
h3>`>1

L1"v#[

By using the triangle inequalities

>u−u001>e"2!D# ¾ >u−uK>e"2!D#¦>u001−uK>e"2!D#

and

>s−s001>c"2!D# ¾ >s−sK>c"2!D#¦>sK−sK�>c"2!D#¦>s001−sK�>c"2!D#

and Theorem 3[0 as well as the results from Morgenstern "0848#\ we obtain

Theorem 3[1[ ]

Let v W R1 be such that the solution wK of the Kirchho} plate equation with the boundary
condition that the plate is clamped along its lateral side is in H1

9"v# K H2"v#[ Then with the above
de_ned expressions the following asymptotic orders of the estimates are valid ]

>u−u001>e"2!D# � O"zh# and >s−s001>c"2!D# � O"zh#[

4[ Numerical example

The "0\0\1#!plate model\ as well as the corresponding 2!D shell formulation\ are already estab!
lished in numerical analysis of a certain class of problems[ It has already been mentioned that the
main merit of the "0\0\1#!model is the applicability of unmodi_ed 2!D material laws[ However\ this
application is not discussed in detail in this paper and therefore the reader is referred to Bu�chter
et al[ "0883#\ Betsch et al[ "0885#\ for corresponding numerical investigations[

The example in this section addresses two main features of the "0\0\1#!model[ Firstly\ its con!
vergence to the Kirchho} and the 2!D solution and secondly its behavior in the range of thick
plates[

We consider a quadratic plate under uniform loading\ see Fig[ 1[ The load is assumed as dead
load\ thus it acts at each material point of the plate\ not only on its top and bottom faces[ Along
the edges of the plate all displacements are zero "{fully clamped|#\ which is exactly the case for
which the proof is given in the present paper[ It is interesting\ to remark that with these boundary
conditions the thickness change of the plate is _xed at the edges in the 2!D!case\ so that the
transverse normal strains are zero[ This leads to transverse normal stresses s22 which apparently
are neglected by the Mindlin theory[

For the calculation with the Mindlin model\ one quarter of the plate is discretized by 01×01 7!
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Fig[ 1[ Uniformly loaded square plate[

noded\ reduced integrated plate elements\ exploiting symmetry[ For the 2!D!solution 09×09×3
19!noded\ reduced integrated brick elements have been used[ To obtain results for the "0\0\1#!
model\ the plate is discretized with one layer of 19!noded brick elements\ thus modelling a quadratic
distribution of the displacements across the thickness[ It has been veri_ed numerically that the
densities of the meshes are such that the results are accurate enough for comparison[ To investigate
the asymptotic behavior of the described theories\ the slenderness of the plate is varied from 0:1
up to 0:199\ being aware of the fact that both values are outside the limits of practical signi_cance
and validity of the described plate theories[

In Fig[ 2 the strain energy B"u\ u#\ obtained by the numerical calculations\ is plotted vs[ the plate
slenderness[ Apparently all formulations tend to the same result as thickness decreases\ which
con_rms the expositions in Section 3 "although a mathematical proof does not seem to need
numerical con_rmation anyway#[

With increasing thickness\ the Mindlin solution tends to overestimate the energy with respect to
the 2!D!solution\ i[e[ it is too ~exible[ The decisive mechanical reason for this phenomenon is most
likely the thickness constraint described before\ which is not taken into account by the Mindlin
model[ Certainly\ there is also a general de_cit in grasping the 2!D overall behavior of the structure\
because in the case of thick plates\ there are not only {bending| and {shear| deformations\ but a
general 2!D stress and strain state has to be taken into consideration[ However\ the neglection of
these {higher order| in~uences on the structural behavior does not necessarily lead to a {softening|
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Fig[ 2[ Strain energy vs[ plate slenderness[

e}ect and therefore an overestimation of the energy[ In fact\ for a similar problem with boundary
conditions which do not lead to a thickness constraint at the edges\ the Mindlin model under!
estimates the 2!D solution\ i[e[ it behaves too sti}[

The "0\0\1#!model again behaves {sti}er|\ which is easy to explain[ Firstly\ it is able to describe
at least approximately the 2!D behavior\ especially the thickness constraint at the edges[ Secondly\
it can be interpreted as a 2!D _nite element solution\ obtained with a coarse mesh in thickness
direction[ As the energy in displacement models approaches the exact value from below\ any other
result would be a surprise[

5[ Conclusions

The "0\0\1#!plate model has been put into the framework of hierarchical modelling using energy
projection[ It has been shown for a certain boundary condition "hard clamped# that the model is
asymptotically correct\ without a need to modify the constitutive law "a similar proof can be given
for alternative boundary conditions\ but is not reproduced herein#[

The investigation points to two main conclusions[ Firstly\ the mathematical foundation of a
plate model including thickness stretch\ frequently used in _nite element plate "and shell# analysis
is given[ Thus\ a mathematically sound plate model is available for e.cient numerical analyses\
using fully 2!D constitutive laws[ Secondly\ it could be seen that the "0\0\1#!model is in fact the
lowest one in a family of models that can be used together with unmodi_ed constitutive laws[
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Thus\ the optimal compromise between 1!D!e.ciency and 2!D!accuracy might be found for a
certain class of problems[

The extension of the present study to shell analysis and geometrical non!linearity is straight!
forward[ Some additional considerations have to be made in the formulation of the hierarchical
model\ because membrane and bending action are no longer decoupled in these cases[ In addition\
the evaluation of the boundary correction terms might cause some trouble[ Nevertheless\ Mor!
genstern|s idea of using the PragerÐSynge theorem for the proof still works[ For results on this
subject see e[g[ Koiter "0869# and Destuynder "0886#[
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